Food Science & Nutrition: Food Analogs

Objectives

- **List** the four main functions of food analogs.
- **Distinguish** between nutritive and nonnutritive sweeteners.
- **Compare** the performance of sugar substitutes

Functions of Food Analogs

- Food analogs are natural or manufactured substances used in place of traditional food products or ingredients
- Food analogs are designed to
 - save money
 - change the nutritive value of food
 - improve the performance of foods and compounds
 - replace foods that are restricted for health reasons

Functions of Food Analogs

- Food analogs are designed to
- Examples of food analogs include
 - texturized protein made from soybeans that costs less than meat and is lower in fat
 - artificial sweeteners that are ideal for people with diabetes

Food Analog Examples

Food Analog Examples

Food Analog Examples

The Pros and Cons of Food Analogs

Cons

Pros

- offer low-fat and reducedcalorie options
- keep prices of food products reasonable
- allow more food options for people with heart disease, food allergies, and diabetes

- viewed as drawbacks to the current food supply by some
- are not "natural"
- may tempt some people to avoid eating a variety of foods

Replacing Sugar

SUGAR

SUGAR SUBSTITUTES

Classification of Sweeteners

Nutritive

- Provides energy to the body
 - Sugar
 - Corn Syrup
 - High Fructose Corn Syrup
 - Sugar alcohols
 - Polyols

Non-Nutritive

- High-intensity sweeteners
- Sugar Substitutes

- **Polyols** are a group of low-calorie sweeteners that
 - are also known as sweet alcohols
 - Although NOT SUGAR and NOT ALCOHOL
 - are found naturally in apples, berries, and plums
 - include sorbitol, mannitol, xylitol, maltitol, lactitol, erythritol, isolmalt, D-Tagatose, and hydrogenated starch hydrosylates (HSH)

- Polyols
 - improve texture and reduce browning
 - helps control moisture content
 - extend the shelf life
 - do not promote tooth decay
 - non-carcinogenic
 - may act as a laxative if eaten in large amounts
 - are found in baked goods, ice cream, chewing gum, candy, and chocolates

Sugar Substitutes

- Consumer demand for lower-calorie foods tasting like high-calorie favorites prompted their development
- The sugar substitutes
 - add sweetness without adding as many calories as sugar
 - are important in many restricted diets
- Nonnutritive sweeteners provide no calories but nutritive sweeteners do

Saccharin

- remains stable in a wide range of foods under extreme processing conditions
- was the first artificial sweetener
- is **2,000** times sweeter than sugar
- has a bitter aftertaste in high concentrations
- has not been found to cause cancer in humans after 20 years of research

continued

Aspartame

- is a dipeptide made from aspartic acid and the amino acid phenylalanine
- tastes almost identical to sugar, but is 200 times sweeter
- is safely consumed at levels up to 50 mg per kilogram of body weight per day
- is used in drinks, puddings, gelatins, chewing gum, and frozen desserts

- Acesulfame K (acesulfame potassium)
 is an organic salt
 - is 130 times sweeter than sugar
 - is stable in high temperatures
 - has no known side effects
 - is approved for use in chewing gum, drinks, instant tea and coffee, gelatins, and puddings

continued

Stevioside

- a natural extract from the leaves of a plant
- up to **300** times sweeter than sugar
- stable at high temperatures and in acids

©Heike Rau/Shutterstock.com

Sucralose

 is a disaccharide made in a 5-step process that replaces 3 hydroxyl groups with chlorine

• is **600** times sweeter than sugar

cannot be digested, so it adds no calories

 remains stable in processing, is soluble in water, and is easily added to foods

Neotame

- is from L-aspartic acid and L-phenylalanine combined with a methyl ester group and a neohexyl group
- is **7,000 to 13,000** times sweeter than sugar
- remains stable in high heat and is approved for baking applications
- works as a flavor enhancer when used in low levels

New Developments in Sweeteners

- Artificial sweeteners are combined with a bulking agent to enhance the texture or thicken the consistency of food products
 - Polydextrose is a bulking agent that mimics the mouth feel of sugar and is used in reduced-calorie products
 - Other bulking agents include alginates, gum acacia, pectin, and xanthan gum

New Developments in Sweeteners

- <u>*Brazzein*</u> is a supersweet protein found in a vine plant that
 - is **2,000** times sweeter than sugar
 - remains heat stable at 98°C (208°F) for 2 hours
 - is stable across a wide pH range
 - can be genetically engineered in maize, then extracted through ordinary milling

Sugar Substitutes Experiment

Purpose:

Evaluate hot and cold beverages sweetened with artificial sweeteners

